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Abstract

Motivation: Brain imaging genetics aims to reveal genetic effects on brain phenotypes, where most studies examine
phenotypes defined on anatomical or functional regions of interest (ROIs) given their biologically meaningful inter-
pretation and modest dimensionality compared with voxelwise approaches. Typical ROI-level measures used in
these studies are summary statistics from voxelwise measures in the region, without making full use of individual
voxel signals.

Results: In this article, we propose a flexible and powerful framework for mining regional imaging genetic associa-
tions via voxelwise enrichment analysis, which embraces the collective effect of weak voxel-level signals and inte-
grates brain anatomical annotation information. Our proposed method achieves three goals at the same time: (i) in-
crease the statistical power by substantially reducing the burden of multiple comparison correction; (ii) employ
brain annotation information to enable biologically meaningful interpretation and (iii) make full use of fine-grained
voxelwise signals. We demonstrate our method on an imaging genetic analysis using data from the Alzheimer’s
Disease Neuroimaging Initiative, where we assess the collective regional genetic effects of voxelwise FDG-positron
emission tomography measures between 116 ROIs and 565 373 single-nucleotide polymorphisms. Compared with
traditional ROI-wise and voxelwise approaches, our method identified 2946 novel imaging genetic associations in
addition to 33 ones overlapping with the two benchmark methods. In particular, two newly reported variants were
further supported by transcriptome evidences from region-specific expression analysis. This demonstrates the
promise of the proposed method as a flexible and powerful framework for exploring imaging genetic effects on the
brain.

Availability and implementation: The R code and sample data are freely available at https://github.com/lshen/
RIGEA.

Contact: li.shen@pennmedicine.upenn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Brain imaging genetics is an emerging research field investigating the
influence of genetic variants on brain imaging phenotypes. It exam-
ines associations between genetic variants, such as single-nucleotide
polymorphisms (SNPs) and quantitative traits (QTs) extracted from
brain imaging data, to gain novel insights into phenotypic character-
istics and molecular mechanisms of complex brain disorders. These
imaging QTs (iQTs) are measured based on either single voxels

(Stein et al., 2010) or regions of interest (ROIs) (Risacher et al.,
2010; Shen et al., 2010; Yao et al., 2017b) in the brain. An ROI is a
pre-defined brain area containing a cluster of voxels with the same
anatomical or functional annotation. Of note, the number of ROIs
(e.g. dozens to hundreds) is much smaller than the number of voxels
(e.g. tens of thousands to even millions) in the brain. Thus, imaging
genetics studies typically investigate ROI-level phenotypes due to (i)
modest dimensionality compared with voxelwise approaches for
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increased statistical power and (ii) structural or functional annota-
tion of ROIs that facilitates biologically meaningful interpretation.

Existing ROI-level imaging genetics studies often employ uni-
variate strategies to evaluate the associations between individual
genetic variants and ROI-level iQTs which are sometimes defined as
summary statistics (e.g. mean) across all the voxelwise measures
from each examined ROI. Genome-wide association study (GWAS),
a widely used univariate analysis method, has been performed in a
large number of studies of neurodegenerative diseases to discover
genetic variants susceptible to brain iQTs. For example, GWAS of
these iQTs have identified disease-relevant genetic associations with
brain imaging measures in the studies of Alzheimer’s disease (AD)
[e.g. those reviewed in Shen et al. (2014)]. Targeted genetic associ-
ation studies have also been performed on brain iQTs to associate
candidate variants to brain ROIs for increasing statistical power and
improving biological interpretation, based on valuable prior know-
ledge, such as genetic functional information (Rajagopalan et al.,
2012; Yao et al., 2019). However, most ROI-based approaches sim-
ply collapse voxel measures into a single value, which reduces detec-
tion power to find weak signals (e.g. those that exist only in part of
an ROI).

Recent advances in acquiring multi-modal neuroimaging tech-
nologies inherently provide detailed voxel-level information and
thus offer enormous opportunities for examining fine-grained brain
abnormalities. In brain imaging genetics, voxelwise strategies have
been proposed to explore genetic effects on the voxel-based meas-
ures of the brain. Stein et al. (2010) proposed voxelwise GWAS
(vGWAS) for exploring the pairwise associations between 448 293
SNPs with 31 622 voxels in an AD study. Hibar et al. (2011) further
presented voxelwise gene-wide association study (vGeneWAS),
which employed a multivariate model to relate the joint effect of
multiple SNPs within a gene with voxel-level measures. Although a
few genes have been suggested by vGWAS (e.g. CSMD2 and
CADPS2) and vGeneWAS (e.g. GAB2), neither approach identified
any significant imaging genetic association surviving multiple testing
correction. Clearly, voxelwise imaging genetics studies are facing a
huge burden of multiple testing correction, given the ultra-high
dimensionalities of the imaging and genetic data.

Random field theory (RFT), implemented in the SPM software
package (https://www.fil.ion.ucl.ac.uk/spm/), has been widely
employed in brain imaging studies to alleviate multiple comparison
burden in voxelwise analyses (Brett et al., 2004). Recently, it has
also been applied and extended to the imaging genetics studies. For
example, Ge et al. (2012) presented a fast implementation of voxel-
and cluster-wise inferences to take into consideration the spatial cor-
relation in the imaging data. The proposed approach was applied to
an AD study and reported several significant imaging genetic associ-
ations (e.g. associations between GRIN2B and volumetric changes
in the parietal and temporal lobes). Note that cluster-wise inference
here considers the spatial correlation among voxels but does not in-
corporate structural or functional annotation information into the
model.

In genomic studies, pathway enrichment analysis has been wide-
ly performed where gene sets corresponding to biological pathways
are examined for association with a phenotype, to help increase stat-
istical power and interpret genomic findings with meaningful bio-
logical annotations. Two types of enrichment methods are often
used in pathway analysis of GWAS findings: (i) threshold-based
methods (e.g. Fisher’s exact test, binomial z-test) that evaluate if the
pathway is over-represented in a list of significant GWAS hits; and
(ii) rank-based methods [e.g. GSEA-SNP (Holden et al., 2008)] that
employ Kolmogorov–Smirnov-like test to determine if the genes
from a pathway are randomly distributed in GWAS results. In AD
studies, several enrichment analyses have demonstrated that genes
functioning in the same pathway can influence imaging traits col-
lectively even when constituent SNPs do not show significant associ-
ations individually (Ramanan et al., 2012; Yao et al., 2017b).

Inspired by the above observations, in this work, we introduce
enrichment analysis into the imaging domain and propose an
enrichment-based framework for mining regional imaging genetic
associations. We call this strategy as ‘regional imaging genetic

enrichment analysis’ (RIGEA), which uses meaningful brain ana-
tomical information as prior knowledge to estimate the collective ef-
fect of a given genetic variant on all the voxels within a pre-defined
brain ROI.

Compared with traditional ROI-wise or vGWAS methods and
the RFT-based cluster-wise inference approaches, the advantage of
the proposed framework is 3-fold: (i) To the best of our knowledge,
this is the first study to apply the enrichment analysis method widely
used in the genomic domain to solving similar problems in the brain
imaging domain. An ROI is a set of voxels with the same structural
or functional annotation. A pathway contains a set of genes with
certain functional annotation. Thus, the ROI in the imaging domain
plays the same role as the pathway in the genomic domain. This ena-
bles a natural expansion of enrichment analysis from the genomic
domain to the imaging domain. (ii) The RIGEA framework, by
exploring the collective effect of weak voxelwise signals, properly
addresses the limited power of ROI-based method which collapses
voxel measures into a single value. (iii) The RIGEA framework is
powerful and flexible. The implementation of enrichment not only
significantly reduces the multiple comparison burden and increases
statistical power, but also can be applied to ROIs with various struc-
tural and functional annotations to enable biological interpretation.

To show the effectiveness of RIGEA, we compare it with trad-
itional ROI-based and voxelwise approaches via an imaging genetics
study in AD, as well as with an RFT-based cluster-wise inference ap-
proach implemented in the SPM software package. Furthermore, we
interpret and validate the RIGEA findings in brain- and AD-relevant
studies, including brain tissue-specific expression QT locus (eQTL)
analysis, genetic association study of AD and functional annotation
analysis using AD pathways.

2 Materials and methods

We first discuss the data and relevant analyses used in this study,
then introduce the detailed methods of the proposed RIGEA frame-
work and finally, describe the strategies for performance evaluation
and results validation.

2.1 Imaging and genotyping data
To demonstrate the power of the proposed RIGEA framework, we
apply it to the fluorodeoxyglucose [18F]FDG-positron emission tom-
ography (PET) imaging genetics analysis in the study of AD. FDG-
PET has been used to measure cerebral metabolic rates of glucose,
and its change occurs early in AD (Mosconi et al., 2010).

The imaging and genotyping data used for GWAS were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (adni.loni.usc.edu). The ADNI was launched in 2003 as a pub-
lic–private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging, PET, other biological markers
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment and early
Alzheimer’s disease (AD). For up-to-date information, see www.
adni-info.org.

Preprocessed [18F]FDG-PET scans were downloaded from the
LONI website (adni.loni.usc.edu), and then aligned to each partici-
pant’s same visit scan and normalized to the Montreal Neurological
Institute (MNI) space as 2� 2� 2 mm3 voxels. Due to the computa-
tional and space cost of vGWAS, we further resliced each high-
resolution scans to 4� 4� 4 mm3 using nearest neighbour interpol-
ation strategy. FDG measurements of 26 951 voxels were extracted
and 116 ROIs were further computed using the mean of voxel meas-
ures within each ROI based on the MarsBaR AAL atlas as previous-
ly described in Yao et al. (2017a). The number of voxels within 116
ROIs ranges from 7 to 788. Nine hundred and ninety-eight non-
Hispanic Caucasian participants (Supplementary Table S1) with
complete baseline voxel-level and ROI-level FDG measurements
were studied. To evaluate the down-sampling quality, we randomly
selected 20 (out of 998) participants and 20 (out of 116) ROIs. For
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each participant, the Kolmogorov–Smirnov test was performed on
each ROI, to evaluate if there is significant difference between the
distributions of voxel-level values from raw imaging data and down-
sampled imaging data. Over 98% participant-ROI pairs (i.e. 393
out of 400) demonstrated no significant difference, indicating an ac-
ceptable down-sampling quality. The diagnostic information was
further used in the evaluation of RIGEA findings for associations
with AD status (Section 2.6.4).

Genotyping data were also obtained from the ADNI database
and were quality controlled (QCed) as described in Yao et al.
(2019). Briefly, genotyping was performed on all ADNI participants
following manufacturer’s protocol using blood genomic DNA sam-
ples and Illumina GWAS arrays (610-Quad; OmniExpress, or
HumanOmni2.5-4v1) (Saykin et al., 2010). QC was performed in
PLINK v1.90 (Purcell et al., 2007) using the following criteria: (i)
call rate per marker �95%, (ii) minor allele frequency �5%, (iii)
Hardy–Weinberg equilibrium test P �1.0E�6 and (iv) call rate per
participant �95%. Significant relatedness pairs with PI_HAT >0.45
were identified, and thereafter one individual from each pair was
randomly excluded. In total, 565 373 SNPs were obtained for 998
participants based on the ADNI-1 610-Quad panel.

2.2 GWAS of FDG-PET imaging
We performed both voxelwise and ROI-wise GWAS on FDG-PET
imaging measures, using linear regression under an additive genetic
model in PLINK (Purcell et al., 2007), with age, gender and educa-
tion as covariates. Post hoc analysis used Bonferroni correction for
adjusting both the number of SNPs and the number of iQTs (i.e.
voxel number for voxelwise analysis and ROI number for ROI-wise
analysis).

For performance evaluation purpose, we further constructed a
novel ROI-level P-value using a summarized statistic from the
voxel-level P-values, named as ‘voxel set analysis’, which we bor-
rowed the idea of gene set analysis that assigned the k-th smallest
SNP-level P-value across all SNPs inside the gene as the gene-level
P-value (Nam et al., 2010). Here, we chose the second-best voxel-
level P-value across all voxels inside an ROI to represent the ROI-
level P-value, to avoid spurious associations from the best P-value.

2.3 Genome-wide meta-analysis of AD
A landmark large-scale genome-wide meta-analysis of clinically
diagnosed AD and AD-by-proxy was recently conducted by Jansen
et al. (2019). Three phases were included as summarized in Yao
et al. (2019). Briefly, Phase 1 was a meta-analysis of multi-cohort
GWAS findings of the AD status with total of 79 154 samples from
three major AD genetics consortia including AD working group of
the Psychiatric Genomics Consortium, the International Genomics
of Alzheimer’s Project and the AD Sequencing Project. Phase 2 was
a GWAS of the AD-by-proxy status with 376 113 samples from the
UK Biobank. Phase 3 was a meta-analysis of Phases 1 and 2 findings,
with a total of 455 238 samples (71 880 cases and 383 378 con-
trols). In this study, we downloaded the summary statistics of the
Phase 3 analysis (available at https://ctg.cncr.nl/software/summary_
statistics) to examine if our RIGEA findings were associated with
AD.

2.4 RIGEA framework
Pathway analyses have been widely used in genomic studies to
examine gene sets corresponding to biological pathways for their
associations with studied phenotypes (Ramanan et al., 2012). In this
work, we expand the scope of enrichment analysis from genomics to
brain imaging and propose a novel framework for mining regional
imaging genetic associations via voxelwise enrichment analysis.
Briefly, we treat brain anatomical regions as pathways, each of
which contains a set of voxels and perform enrichment analysis on
the voxelwise statistics to identify ROIs over-represented by top
voxelwise findings. Below, we describe the details of the proposed
RIGEA framework (Fig. 1).

We obtained the voxelwise genetic association results from
Section 2.2, including P-values between S ¼ 565 373 SNPs and

N ¼ 26 951 voxels. Considering the computational cost resulted
from the large number of SNPs, we chose threshold-based strategy
for enrichment analysis. Specifically, we employed Fisher’s exact
test with Bonferroni correction for multiple tests. Given a SNP Si,
the imaging genetic findings are a list Li of significant SNP-voxel
associations with P-values passing a pre-defined threshold. Given an
ROI Rk that contains total rk voxels Vk ¼ fvk;1; . . . ; vk;rk

g, RIGEA
aims to determine whether the set of voxels Vk from the targeted
ROI Rk is enriched in Li.

Now, we present our RIGEA framework. Given a SNP Si, we
have N Si-voxel associations from voxelwise imaging genetic associ-
ation analysis, out of which ni ¼ jLij (the set Li) are significant ones
with P-value passing a pre-defined threshold. Within ROI Rk, there
are rk ¼ jVkj (out of N) Si-voxel associations, of which li significant
ones are from Li. Applying the Fisher’s exact test for independence,
the enrichment P-value for the ROI Rk associated with SNP Si is as
follows:

Pi;k ¼ Pr ðjVk \ Lij � liÞ ¼
X

j�li

rk

j

� �
� N � rk

ni � j

� �

N
ni

� � : (1)

Here, Prð�Þ is the probability function.

2.5 Evaluation of the RIGEA framework
We evaluated the statistical power of RIGEA on discovering imaging
genetic associations by comparing it with ROI-based GWAS and
voxel set analysis (second-best P-value strategy) as described in
Section 2.2.

We also compared RIGEA with the RFT-based cluster-wise in-
ference implemented in SPM. Due to the computational time cost, it
was infeasible to perform cluster-wise inference for each of the
565 373 SNPs. Thus, we narrowed down the comparison from
examining all the genome-wide variants to just the meaningful
RIGEA findings (see Section 2.6 for detailed information), to check
if RFT-based approach could have comparable statistical power on
detecting the biologically validated SNP-ROI associations.
Specifically, the additive effects of the identified SNPs from RIGEA
were assessed at each voxel using SPM12 (https://www.fil.ion.ucl.
ac.uk/spm/software/spm12/) under one-way ANOVA test with age,
gender and education as covariates. The statistical analysis results
were assessed at family-wise error (FWE) corrected P-value <0.05.
The genetic effects were then mapped onto the brain via cluster-wise
analysis results.

2.6 Biological interpretation and validation of the RIGEA

findings
To determine the biological functions and molecular mechanisms of
the RIGEA imaging genetic findings, we test whether the genetic
findings from RIGEA are functionally relevant to AD and explore
the effect of identified SNPs on gene expression of specific brain tis-
sues and direct effect on AD status.

2.6.1 Functional annotation

Given that FDG glucose metabolism measures in brain regions are
promising AD biomarkers, the imaging genetic findings from the
FDG study could have direct or indirect connection with AD. Thus,
we proposed to use AD pathways to evaluate the functional rele-
vance of our findings. We collected the AD-related pathways from
three publicly available databases (Qiagen RT2 Profiler PCR Arrays,
KEGG pathway database and MSigDB) and further kept those with
size ranging from 10 to 400 (Ramanan et al., 2012). We then
mapped the RIGEA identified SNPs to their closest genes (within
620 kb), and grouped these genes by their associated ROIs (i.e. for
each ROI, formed a set of its associated genes). Finally, we tested
the enrichment of the AD-relevant pathways in each set of ROI-
associated genes.

2556 X.Yao et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/8/2554/5682410 by U
niversity O

f Southern C
alifornia user on 17 M

arch 2021

https://ctg.cncr.nl/software/summary_statistics
https://ctg.cncr.nl/software/summary_statistics
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/


2.6.2 UKBEC brain tissue-specific eQTL analysis

We validated the novel SNP-ROI findings in brain tissue-specific
eQTL analysis. Specifically, we used eQTL dataset available at
BRAINEAC (http://www.braineac.org/), a web server for data from
the UK Brain Expression Consortium (UKBEC) (Ramasamy et al.,
2014). This dataset contains 12 brain tissues from 134 neuropatho-
logically normal subjects. For each RIGEA identified significant
SNP-ROI association, we first mapped the ROI to the corresponding
UKBEC brain tissue according to the anatomical location, and then
assessed the altered gene expression of the SNP in this specific brain
tissue. Here, we focused on the cis-effect and examined expressions
of genes located within 6100 kb of the SNP. Barplot was employed
to illustrate the gene expression stratified by the eQTL findings.
These tissue-specific eQTL results can help provide novel insights
into neurogenetic mechanisms of how genetic variants affect brain
QTs via regulating gene expression and offer molecular evidence for
better mechanistic understanding of the studied disease.

2.6.3 GTEx brain tissue-specific eQTL analysis

To further validate the regulatory relationships among SNPs, genes
and brain tissues reported from the UKBEC eQTL analysis, we used
another brain tissue gene expression dataset to examine the effect of
identified eQTLs on brain tissue-specific gene expressions.
Specifically, we used brain tissue-specific gene expression data from
the Genotype-Tissue Expression (GTEx) project (https://gtexportal.
org/home/), an ongoing effort to build a comprehensive public re-
source to study tissue-specific gene expression and regulation.
Samples in GTEx were collected from 53 non-diseased tissue sites
across nearly 1000 individuals, primarily for molecular assays
including whole genome sequencing, whole-exome sequencing and
RNA-Seq. There are 13 brain tissues included in GTEx, with sample
sizes ranging from 80 to 154. Given a significant UKBEC eQTL
finding (i.e. a combination of SNP, gene and ROI), we first mapped
the ROI to the corresponding GTEx brain tissues according to the
anatomical location, and then assessed the association between the
SNP and the gene expression in the specific brain tissue. Violin plot
was employed to illustrate the altered expression level among genet-
ic groups.

2.6.4 Genetic association analysis of AD diagnosis

In addition, to examine whether the validated genetic findings have
a direct effect on AD, we further evaluated their associations with
the AD diagnostic status on two datasets as described in Sections 2.1
and 2.3. SNPs identified from RIGEA and further validated in eQTL
analysis were assessed for associations with AD diagnosis.

3 Results

We applied our RIGEA framework to the vGWAS of the FDG-PET
measures in an AD study, for mining the regional imaging genetic
associations. We compared the performance of proposed framework
with traditional ROI-wise GWAS and a proposed voxel set analysis
(second-best strategy), as well as an RFT-based cluster-wise infer-
ence. We further evaluated the molecular mechanisms of the identi-
fied SNPs in their associated brain regions and examined the effects
of these genetic variants on disease. In the below sections, we report
and discuss our results.

3.1 GWAS of FDG-PET iQTs
GWAS was performed on both ROI-wise (i.e. the mean of all voxel
measures within the ROI) and voxelwise FDG-PET measures, to
examine the imaging genetic associations of 565 373 SNPs with
FDG measures of 116 ROIs and 26 951 voxels, respectively. We fur-
ther performed the voxel set analysis on the vGWAS results by
assigning the second-best voxel-level P-value to each ROI and gener-
ated a list of 116 novel ROI-level summary P-values.

In the vGWAS, we used the Bonferroni corrected P-value
< 0:05=ð26 951� 565 373Þ ¼ 3:28e� 12, and identified 123 sig-
nificant associations between two SNPs and 12 ROIs. In both the
ROI-wise analysis and the second-best voxel set analysis, we used
the same Bonferroni corrected P-value < 0:05=ð116� 565 373Þ ¼
7:62e� 10 as the threshold (i.e. corrected for both the number of
ROIs and the number of SNPs). With ROI-wise approach, we identi-
fied nine SNP-ROI associations covering two SNPs and seven ROIs.
With second-best voxel set approach, we identified 46 SNP-ROI
associations covering eight SNPs and 24 ROIs. Note that all nine

A

B

D
E

F

C

Fig. 1. RIGEA. The workflow illustrates the data and methods used in the development of RIGEA. (A) Briefly summaries the statistics of the genotyping and imaging data from

the ADNI cohort. B and C describe the voxelwise and ROI-wise GWAS, respectively. (D) Shows the detailed implementation of RIGEA, demonstrated by an example that

examines association between SNP rsi and ROIj. (E) Compares the performance of RIGEA with other strategies, for evaluating the statistical power of our proposed method.

(F) Validates the imaging genetic findings from RIGEA

Regional imaging genetic enrichment analysis 2557

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/8/2554/5682410 by U
niversity O

f Southern C
alifornia user on 17 M

arch 2021

http://www.braineac.org/
https://gtexportal.org/home/
https://gtexportal.org/home/


SNP-ROI associations from ROI-wise GWAS were identified by the
second-best voxel set analysis. Of note, two SNPs rs769449 and
rs4420638 reported from both voxelwise and ROI-wise GWAS are
located in well-known AD genes (rs769449 is located in APOE and
rs4420638 is located in APOC1) and are in linkage disequilibrium
(D’ ¼ 0:954 calculated from 1000 Genome Phase 3 CEU popula-
tion). Detailed findings of vGWAS, ROI-wise GWAS and second-
best voxel set analysis were listed in Supplementary Tables S2–4.

3.2 RIGEA imaging genetic discoveries
For each SNP, we obtained a list of 26 951 SNP-voxel associations
across all voxels in the brain. Given a SNP Si, for each ROI, we
assessed the collective effect of Si on all voxels located inside the
ROI by calculating the enrichment score, to relate Si to ROI. We
employed P � 1e� 5 as the threshold to determine the list of sig-
nificant SNP-voxel associations for RIGEA, to avoid missing indi-
vidually moderate while collectively significant signals. We obtained
enrichment P-values between all 565 373 SNPs with 116 ROIs,
among which 4435 SNP-ROI pairs were significant after correcting
for both the number of SNPs and the number of ROIs (i.e. P-value
< 0:05=ð116� 565 373Þ ¼ 7:62e� 10). To avoid spurious, over-
representation associations resulted from a small number of signifi-
cant hits across all voxels [i.e. small Li value in Equation (1)], we
kept significant findings with Li > 10 and obtained 2979 (out of
4435) associations. These RIGEA findings covered 2100 SNPs and
112 unique ROIs. We further mapped the identified SNPs to their
closest genes (620 kb). A full list of RIGEA findings is shown in
Supplementary Table S5.

3.3 Performance evaluation
We compared RIGEA significant findings with ROI-wise GWAS
and second-best voxel set analysis results. RIGEA identified 2946
novel imaging genetic associations in addition to 33 SNP-ROI pairs
that were also found by the other two methods. Note that the nine
significant associations from ROI-wise GWAS were all captured by
RIGEA. As expected, RIGEA not only conserved high concordance
with findings from ROI-wise and second-best voxel set strategies,
but also reported novel SNP-ROI associations. This indicates that
integrating fine-grained association statistics with brain ROI infor-
mation could help identify high-level imaging genetic associations
with meaningful biological interpretation. Supplementary Table S6
shows the 33 overlapped findings.

3.4 Biological interpretation and validation
3.4.1 Functional annotation of the RIGEA findings

We extracted totally 18 AD relevant pathways from three resources:
10 from Qiagen RT2 Profiler PCR Arrays human AD, one from
KEGG AD pathway and eight from MSigDB regulation analysis of
AD. In our functional annotation analysis, we excluded five path-
ways with too small or too large sizes, and included 13 pathways
with sizes ranging from 10 to 400.

After mapping the 2100 unique SNPs from RIGEA to the closest
genes, we obtained 829 unique genes associated with 110 ROIs and
then tested the enrichment of 13 AD pathways in each of 110 gene
sets for functional relevance to AD. Supplementary Table S8 shows
the significantly enriched AD pathways under Bonferroni corrected
P-value of 0:05=13=110 ¼ 3:50e� 5 (i.e. corrected for both the
number of gene sets and the number of pathways). Seven AD path-
ways are significantly enriched in 31 ROI-specific genetic findings,
indicating the power of RIGEA for identification of disease risk
factors.

3.4.2 UKBEC brain tissue-specific eQTL analysis

Identified genetic variants can influence the disease-relevant imaging
phenotypes through gene expression regulation. Thus, we further
examine the biological significance of 2946 new SNP-ROI findings
from RIGEA, through brain tissue-specific eQTL analysis using gen-
otyping and expression data of 12 brain tissues from UK Brain
Expression Consortium (UKBEC) (Ramasamy et al., 2014).

There were totally 2098 unique SNPs and 112 unique ROIs cov-
ered by 2946 new RIGEA hits. After mapping ROIs to UKBEC brain
tissues (not every ROI can be mapped to a UKBEC tissue), 1006
SNP-ROI pairs remained, covering 735 SNPs, 72 ROIs and seven
UKBEC brain tissues. We assessed the cis-effects of these 735 SNPs
on brain tissue-specific expression levels of genes located within
6100 kb from the SNPs. We obtained a list of 3121 tissue-specific
eQTLs (see Supplementary Table S7 for a full list of UKBEC eQTL
result) among which 179 are nominally significant with P-value
<0.05. We further restricted the significance threshold to
0:05=3121 ¼ 1:60e� 5, and identified two cis-eQTLs.

Table 1 lists the details of the two identified SNPs, including the
RIGEA results and eQTL results from UKBEC analysis. The SNP
rs2863242, located in gene PAX8, is significantly associated with
the right lingual FDG glucose metabolism (corrected P
¼ 3:54e� 07). The right lingual gyrus is located in occipital cortex
(i.e. UKBEC OCTX), in which rs2863242 is significantly associated
with the expression of gene PAX8-AS1 (P ¼ 2:14e� 08). Another
significant finding is rs2863242, which is located in gene GAS7 and
is significantly associated with right middle frontal FDG glucose me-
tabolism (corrected P ¼ 1:06e� 02). The right middle frontal gyrus
is located in frontal cortex (i.e. UKBEC FCTX), in which rs4668
regulates the gene expression of RCVRN with P ¼ 2:80e� 15.

Figure 2 shows the associations and effects of the identified
eQTLs on expression of regulated genes. Figure 2A illustrates the
differential expression level of PAX8-AS1 across three rs2863242
genotype groups (i.e. CC, CT and TT), showing that the presence of
minor allele T of rs2863242 has an additive effect on decreasing ex-
pression of PAX8-AS1. Figure 2B shows the expression of RCVRN
stratified by three rs4668 groups (i.e. CC, CT and TT), indicating
the additive effect of minor allele T of rs4668 on increasing expres-
sion of RCVRN.

The region-specific eQTL results shown above demonstrate the
ROI-relevance of the identified SNPs and their roles on molecular
regulation in the corresponding brain regions. This indicates that the

Table 1. Significant eQTL results from UKBEC and GTEx databases

SNP RIGEA eQTL

Chr rsID bp A1/A2 Closest gene ROI P-value Brain tissue Beta P-value Regulated gene

2 rs2863242 113989236 T/C PAX8 Lingual_R 3.54E�07 UKBEC OCTX �0.33 2.18E�08 PAX8-AS1

(LOC654433)

GTEx Cortex �0.67 7.00E�06 PAX8

GTEx Cortex �0.67 9.60E�06 PAX8-AS1

17 rs4668 9814423 T/C GAS7 Frontal_Mid_R 1.06E�02 UKBEC FCTX 0.50 2.80E�15 RCVRN

GTEx Frontal

Cortex

1.10 3.00E�27 RCVRN

Note: UKBEC uses the symbol LOC654433, which has already been replaced by PAX8-AS1 in the NCBI gene database (https://www.ncbi.nlm.nih.gov/gene/?

term¼LOC654433). We choose to use PAX8-AS1 in this paper for consistency.

2558 X.Yao et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/8/2554/5682410 by U
niversity O

f Southern C
alifornia user on 17 M

arch 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz948#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz948#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz948#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz948#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz948#supplementary-data
https://www.ncbi.nlm.nih.gov/gene/? term=LOC654433
https://www.ncbi.nlm.nih.gov/gene/? term=LOC654433
https://www.ncbi.nlm.nih.gov/gene/? term=LOC654433


proposed framework can promote the identification of the imaging
genetic associations with evidence manifest at the brain transcrip-
tome level, with the potential to help interpret the underlying mo-
lecular mechanisms.

3.4.3 GTEx brain tissue-specific eQTL analysis

For further validation of the eQTL findings, we used tissue-specific
expression data in GTEx to examine the effects of rs2863242 and
rs4668 on the expression of PAX8-AS1 and RCVRN in the corre-
sponding brain tissues, respectively. Table 1 shows the GTEx eQTL
results of rs2863242 and rs4668. Given the 13 available GTEx brain
tissues, right lingual gyrus and right frontal middle gyrus are
mapped to cortex (GTEx Brain-Cortex) and frontal cortex [GTEx
Brain-Frontal Cortex (BA9)], respectively. Supplementary Figure S1
shows the expressions of genes stratified by genetic groups. Minor
allele T of rs2863242 significantly down-regulates the expression of
PAX8 and PAX8-AS1 with P-values of 7:00e� 06 and 9:60e� 06.
Minor allele T of rs4668 is associated with the up-regulation of
RCVRN expression (P ¼ 3:00e� 27). This concordance between
GTEx and UKBEC eQTL results further confirms the potential regu-
latory roles that identified variants play on the expression of the
relevant genes in the corresponding brain regions.

3.4.4 Association of the RIGEA findings with AD

To examine whether the genetic findings from RIGEA are directly
associated with the AD status, we first leveraged the valuable results
from the most recent large-scale genome-wide meta-analysis of AD
by Jansen et al. (2019). According to the summary statistics of Phase
3, rs2863242 exhibited a significant association with AD (P
¼ 1:32e� 2; N¼458 744). The corresponding effect size is
�0.0062, indicating a protective role of the minor allele rs2863242-
T in AD. No significant association between rs4668 and AD
(P¼0.20) was observed.

We further checked the AD association of these two SNPs in the
ADNI data, using the participants involved in our RIGEA analysis.
There was a significant association between rs4668 and AD (P
¼ 2:42e� 2; N¼998) with effect size of �0.071, suggesting a pro-
tective effect of minor allele rs4668-T for AD. No significant associ-
ation between rs2863242 and AD (P¼0.83) was observed.

3.4.5 Comparison with RFT-based approach

As mentioned in Section 2.5, we did a comparative study between
RIGEA and the RFT-based analyses implemented in the SPM

software package on the RIGEA significant findings. Due to the
computational cost, we performed the comparison only on two
identified SNPs, rs2863242 and rs4668. Table 2 shows the signifi-
cant clusters identified from voxelwise analysis of the additive effect
of SNPs with FWE P<0.05. There are five clusters identified to be
associated with rs4668 with the number of voxels ranging from 3 to
38, four out of which are located in the left and right frontal lobe.
Supplementary Figure S2 illustrates the additive effect of rs4668 on
FDG glucose metabolism, where the minor allele of rs4668 is associ-
ated with higher FDG glucose metabolism. There is no significant
finding for rs2863242. Note that the FWE P-value from SPM voxel-
wise analysis is corrected for the clusters, while not corrected for the
number of SNPs. These findings will face a major burden of multiple
comparison correction if a huge number of genome-wide SNPs are
examined.

4 Discussion and conclusions

We have proposed a RIGEA framework via an innovative applica-
tion of enrichment analysis to the imaging domain, to explore the ef-
fect of each genetic variant on an ROI by aggregating fine-grained
voxelwise imaging genetic associations using anatomically or func-
tionally annotated ROI information. We have demonstrated the ef-
fectiveness of RIGEA using the ADNI imaging genetics data. In
addition to associations identified by traditional ROI-wise and voxel
set analyses, our approach has reported novel SNP-ROI findings,
some of which have been revealed as eQTLs regulating genes
expressed in the corresponding regions. Our approach further out-
performs the RFT-based image analysis strategy through achieving
more significant P-values on biologically eQTLs. These findings
demonstrate the power of the presented method on identifying indi-
vidually modest while collectively substantial imaging genetic
signals.

Our approach effectively leverages neuro-anatomical knowledge
and voxelwise statistics. The neuro-anatomical knowledge guides
the construction of voxel sets (i.e. analogy to pathways in the gen-
omic domain) that facilitate meaningful interpretation of the enrich-
ment findings. The use of fine-grained voxel-level statistics can
promote the identification of signals which are individually modest
while jointly substantial. Our biologically validated associations can
help provide valuable information for revealing the molecular path-
way from genetic variants, gene expression and brain region to dis-
ease and further help improve the understanding of complex disease
pathology.

The two RIGEA discovered region-specific eQTLs, rs2863242
and rs4668, are located in gene PAX8 and GAS7, respectively.
PAX8 has been studied for its critical role in pattern formation in
central nervous system development (Song et al., 1996) and shown
its differential methylation between schizophrenics and healthy con-
trols in human brain cortex (Siegmund et al., 2007). The GAS7,
growth arrest-specific protein 7, has been widely studied for its pri-
mary expression in brain cells and functional involvement in the AD
progression (Akiyama et al., 2009; Gotoh et al., 2013; Hidaka et al.,
2012). Given these biological evidences, it warrants further
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Fig. 2. UKBEC brain tissue-specific cis-eQTL results. (A) The expression level of

PAX8-AS1 in the temporal cortex stratified by rs2863242 groups. P-value indicates

the association significance of rs2863242 with the expression of PAX8-AS1 in the

occipital cortex. P-value is calculated from linear regression with gender as covari-

ate. Presence of minor allele T of rs2863242 suggests an additive effect of decreasing

gene expression of PAX8-AS1. (B) The expression level of RCVRN in the frontal

cortex stratified by rs4668 groups. P-value indicates the association significance of

rs4668 with the expression of RCVRN in the frontal cortex. P-value is calculated

from linear regression with gender as covariate. Presence of minor allele T of rs4668

suggests an additive effect of increasing gene expression of RCVRN

Table 2. SPM cluster-wise analysis of effect of SNPs on FDG glu-

cose metabolism

SNP FWE p Number

of voxel

x y z ROI

rs4668 0.002 38 �44 48 8 Front Mid R

0.009 16 �52 30 18 Front Inf Tri R

0.012 13 52 36 16 Front Inf Tri L

0.023 5 10 70 –6 Front Med Orb L

0.029 3 44 58 �2 —

rs2863242 — — — — — —

Note: x, y and z represent the coordinates of cluster centres in the MNI

space.
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investigation to examine the regulatory roles of the identified SNPs
on the expression level of the corresponding genes in relevant brain
regions, and their relationship with AD pathology.

The real power of RIGEA, however, can be affected by several
factors. First, Fisher’s test requires a pre-defined threshold to deter-
mine the list of significant SNP-voxel pairs. Although this makes the
framework more flexible in practice for tightening or relaxing
voxel-level effects, it considers only the number of significant pairs
without taking into account the full spectrum of association statis-
tics. Rank-based enrichment strategies [e.g. (Subramanian et al.,
2005)] can be employed in our framework to overcome these limita-
tions, while their computational burden is considerable. Another
issue is that RIGEA requires to compute voxel-level associations in
advance, which is both time and space demanding, especially given
millions of SNPs in GWAS data. Therefore, another direction is to
design scalable computational framework for accelerating the voxel-
level GWAS.

In sum, we have proposed the RIGEA framework by expanding
the scope of pathway enrichment analysis from genomics to imaging
domain and demonstrated its performance with an imaging genetics
study in AD. The imaging genetic findings conserve both regional
specificity and functional relevance in the brain, showing the prom-
ise of the proposed method. This work can be further expanded to-
wards several future directions. For example, one direction is to
employ rank-based strategy for enrichment test to make use of the
full spectrum of voxelwise statistics. Another direction is to apply
this framework to other annotations like functional annotation,
brain connectivity network for integrating brain regional informa-
tion into vGWAS.
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